DND Technology - a Core platform for Specialty Mode Guiding Structures

H.J. Hoffman^a, M. Söderlund^a, J. Koponen^a, D. A. V. Kliner^b, and J. Koplow^b

^a Liekki Corporation, Sorronrinne 9, FI-08500 Lohja, Finland b Sandia National Laboratories, Livermore, California

SPRC '06, Stanford, 20 September 2006

Copyright Liekki Corporation, Sorronrinne 9, FI-08500 Lohja, Finland

www.liekki.com*www.liekki.com*

$H = K$

Synopsis

- •What's DND and why is it good for you
- •Comparisons with other processes
- •DND made DC fibers performance
- New developments and new potential
- •Photodarkening measurements
- •Conclusions

ILLUSTRATIVE

$H = K$ **Active fibers very different from Telecom fiber -**

Doped fiber used in traditional telecom *New requirements* • *Much larger cores* • *High doping levels* • *Controlled doping and homogenity across core*• *No photodarkening Existing fiber production technologies were developed for traditional telecom fibers...... but new applications require much* • Small core/cladding ratio • Very small core volume **much more required from manufacturing Process Double clad LMA fiber for high power applications**

- Thick plain glass cladding with acrylate coating
- Simple geometry

more from the production process

- Large core/cladding ratio
- Double clad, dual coated
- Novel geometries, stress rods for PM

Processes used for specialty fiber fabrication

*Fundamental problems in delivering RE ions to reaction zone – delivery temperatures of ~200 degC required.

 $I = K$

Optical fiber fabrication methods

 \rightarrow Specialty Fibers

MCVD with solution doping is cumbersome

 $E>K$

$\equiv <$

Flame Hydrolysys Techniques - VAD and OVD

- Si and waveguiding dopants typically delivered as Chlorides
- Rare Earths (RE) can (in principle) be delivered as vapors, aerosols or solution
- RE's tend to cluster limited doping concentration (equipment modifications may help but at cost of increased complexity)
- Economics for modified version used for specialty fibers (Corning) still TBD
- Flame hydrolysis techniques suitable for large volume telcom grade fibers but lack flexibility

.iE=KK

OVD/VAD vs MCVD Process

OVD / VAD

- Doping during soot deposition
- flame hydrolysis =>large particles

- doping after soot deposition
- oxidation => small particles

Reference: "Optical Amplifiers: materials, devices, and applications" , Shoichi Sudo editor, Artech House 1997

Outside vapor deposition (OVD) is telecomproven technique of producing reliable optical fiber

What nanoparticle technology provides

Key Process Advantages

- Possible to use both high and low vapor pressure raw materials
- Good homogeneity of the sintered glass
- Homogeneous sites for the rare-earth ions
- A nanoparticle generation and deposition process offers great flexibility

Process Challenges

- Agglomeration can limit the nanoparticle generation speed
- Small particle size moderates growth rate --> trade-off against accuracy, yield

IEBK K

DND Fiber Preform Manufacturing Principles

 \blacksquare Kk

$=$ Kk

Liekki DND process: a breakthrough approach to manufacturing Guided Wave Structures

Liekki Direct Nanoparticle Deposition (DND) process overview

Unique patented process

• Combustion of gaseous and atomized liquid raw materials **--> All-liquid sources possible --> Greater flexibility for RE doping**

•Accurate control of the doping profile – *flat refractive index profile (RIP) --> Ideal for Large Mode Area (LMA)*

•High dopant concentrations *–-> shorter application lengths*

Liekki's DND process uses nanoparticle deposition for highly controllable doping

Liekki DND process overview

Process features

- •Direct, single-step doping process
- •Creates 100s of doped nanoparticle layers in core - superior consistency, minimizes clustering --> high doping
- •Simultaneous and independent radial control of guiding (indexeffecting) and active dopants
- •Rapid process, LMA core in matter of hours
- •Can be readily adapted to noncircular structures (rectangular)

S. Tammela et al., " Potential of nanoparticle technologies for next generation erbium-doped fibers" OFC'04, OFC2004 Technical digest, FB5 (2004)

DND technology is a breakthrough in fiber manufacturing process capability

Incumbent MCVD process

- 35 years in industrialization at end of S-curve
- Designed for traditional small core telecom fiber production
- Large particle size = microns
- Typically an in-tube deposition process
- Solution diffusion of dopants into glass few layers of doped material, clustering
- Moderate doping of active elements
- Slow, multi-step process for large cores
- Moderate threshold to photodarkening
- Control of radial doping profile difficult
- Complex process required for flat RIP and elimination of core burn out
- Limited to round fiber core geometries

DND fiber process

- 6 years into industrialization at beginning of S-curve
- Designed for advanced highly doped large mode area fiber production

 $E>K$

- Small particle size = nanometers
- Outside-tube deposition process
- Direct deposition of dopants within glass 100s of layers doped material, no clustering
- Highest possible doping of active elements
- Fast direct deposition of large cores
- High threshold to photodarkening
- Accurate radial control of doping profile
- Inherent flat RIP and no core burn out
- Square fiber core geometries and planar designs possible

www.liekki.com14

Homogeneous fiber core – crucial for fiber application performance

Fiber made with Liekki DND technology

- •Homogeneous doping, 100s of layers
- •High doping, low clustering
- •No core burn-out
- •Sharp geometry, large core/clad possible

 $E>K$

$F=K$ k

High Doping Control Required for Flat RIP --> Key Goal for LMA Fibers: Eliminate Core Burn-Out

•With DND - Typical radial refractive index variation: < ± 15% Profile variation along preform < ± 5%

Radial profile control for improved LP01 tranmission/amplification

M^2 ~1.6 for 25µm, 0.065 NA

 \leq \leq \leq

- Preferential gain for LP01 by matching doping with fundamental mode
- LAD used to optimize the doping profile for a straight fiber
- Up to 7dB higher gain for LP01 vrs next mode in 25µm core expected
- Constrained by mode distortion/offset when fiber is bent
- M^2 ~1.6 measured with loosly coiled (20cm diameter) 25µm core fiber

ILLUSTRATIVE

Exploit DND's independent and accurate control of both doping profile and RIP

- Step index RI
- Normal or confined doping
- No radial control
- Beam quality may suffer from core burnout
- Very flat RI, no core burnout
- Doping optimized for LP01 preferential gain
- Good beam quality, no core burnout
-
- Radial control of both RI and doping
- Large core single mode

 \ge \le \le

DND capabilities match up well with advanced high-power fiber laser requiremements

DND process capabilities offer even more potential for advanced fiber manufacturing - e.g., core platform!

 $=$ KK

What Nanoparticle Technology can Provide

 $LIEKK$

www.liekki.com20

NANOPARTICLE TECHNOLOGY ADVANTAGES SUMMARY

• **Nanoparticle technology provides**

–Possibility of using high and low vapor pressure materials simultaneously –Potential to produce uniform material both in nano- and macroscopic scale –Independent selection of deposition process and preform geometry

JEKK

• New types of doped/undoped waveguide structures

–Scalability - process speed, yield, geometries, performance

To rare-earth doped fibers this means

–Higher concentrations, shorter fibers, less non-linearity and dispersion

- –Potential for lowering susceptibility to photodarkening and other degradation mechanisms by more precise engineering of compositions
- –Better uniformity in doping and in spectral properties
	- Within fiber, both in lateral and longitudinal
	- From fiber to fiber
- –Simpler preform glass work
- –Wide range of core/cladding ratios (small to large)

EKK

The Road toward Mass Customization - Streamlining of Fiber manufacturing Process

- Market for LMA Fibers is highly fragmented Broad requirements trade space, high demand for custom fibers
	- So many different fibers, so few standards
	- Little commonality between vendors' definitions of fiber attributes (doping level, fiber efficiency, polarization, etc.)
	- In-fiber components need to be developed for each class of fiber
- •Mass Customization model needed for manufacturing a broad :variety of fibers optimized for different applications
	- Core sizes that range from SMF to very large mode areas (100µm)
	- Different core-to-clad ratios for different applications using different pumping methods
	- <u>The challenge:</u> optimize core and clad separately would streamline process
		- Examples: One core different claddings All glass, PM, raised, coatings
		- Requires process with fast preform production and advanced draw technology (sleeving)
	- <u>Advantages:</u> Customization of product moved down the fabrication steps (final draw)
		- Provide custom fibers without sacrificing overall yields --> Better process economy
		- A uniform production environment for both standard and custom waveguides
		- Improve availability of in-fiber components(e.g., FBG's) and matched passive structure

DND COMPATIBLE WITH CORE PLATFORM

- **External deposition allows stocking separate core preforms designed to different specifications**
	- Variations may include; alternate compositions, doping concentrations/ profiles, range of NA'S, different dimensions. ranked quality ratings
	- Offer high degree of selectivity, e.g., for CW vs.pulsed applications
	- Rapid deposition process will allow highest resistance to photodarkening
- **Single core preform can be used for several different clad structures**
	- Greatly improved process economies
	- –Sleeving
	- New fabrication paradigm for lasers: mass customization at affordable prices the right thing for a highly fractured (but idea-rich) market?
- **Wide applicability to circular and non-circular structures**
	- Can be used for all circular fiber types, including PCF's
	- Can be modified for planar wave guiding structures (fiber and/or wafer)
	- a new approach to mass customization of wave-guiding structures

 $I = K$

$H = K$

Brief history of Liekki

- Early 1990s DND research initiated
- 1999 Company founded
- 1999-2002 Focus on telecom, Er
- 2003-2005 Extension to laser market, Yb
-
- Today * Full-blown Yb-DCF(-PM) LMA product range
	- * Erbium fibers
	- * Mached passives & FBGs
	- * Optical Engines
	- * Liekki Application Designer software (LAD)
	- * Photodarkening Measurements
	- * Radial doping capability

EXPERIMENT

Highly-doped DND Er fibers demonstrated low clustering and high-efficiency in 2001-2

- •Liekki among first to released highly-doped Er-fibers in 2002
- •Much reduced length, 22m vrs ~70m (conventional Er-fiber)
- •Low level of Er-ion clustering
- •Very high L-band efficiency with QCE: 65%

S. Tammela et al., "Very short Er-doped silica glass fiber for L-band amplifiers," OFC'03, OFC2003 Technical digest, 1, 376-377 (2003)

EXPERIMENT

JEKK

Higher doping means improved performance and shorter fiber

Comparison of Er fiber gain profiles for different wavelengths

Same or better performance with 60% less fiber!

Beneficial Features

- Higher gain per unit length, up to 70% less fiber needed – lower materials and assembly cost
- Shorter fiber less undesired nonlinearity and PMD effects
- Flat and wide gain spectrum makes wide band design easy – less cost for gain flattening filters (Telecom)
- Good splicing characteristics – easy to use in production

\sim \sim

Reliable and repeatable process - excellent fiber consistency along and across preforms

DND fibers: ASE source

•The broad band gain bandwidth results also broad ASE sources •When the gain at C and L band are close enough it is possible to make C+L band ASE source using one active fiber

.IEKK

Current Liekki fiber capabilities

•Er, Yb, Er/Yb, Nd, Tm doped specialty fibers •High-doping concentrations – short fibers •SM to LMA cores (100+ µm) •Cladding dimensions from 50µm to 1+mm •Panda PM fibers (active/passive) •Photosensitive fibers (SM/LMA) •Radial/confined doping for LP01 preferential gain •Phosphosilicate fibers (in progress) •Rectangular fibers (diode delivery/active) •Fluorosilicate all-glass + high T coatings •Specialty components (stress rods, ASE filters, FBGs...) •Doped nanoparticles, soot & preforms

Ongoing Research & Development activities

 $=$ K \leq

- Type-testing of double clad fibers (T, OH, bending)
- High-temperature coatings (polyimide, copper, ...)
- Optical/radiation damage limits of doped fibers
- In-fiber combiner solutions
- Flat waveguide Fiber designs for single-aperture power scaling
- Alternative soot deposition/collection methods
- Planar Integrated Waveguides

EXPERIMENT

Yb-doped DND fibers feature high *pump absorption* **and excellent** *power tolerance*

•Highly-doped Liekki Yb1200-30/250DC •Pump absorption ~15dB/m at 976nm •Single-stage amplifier seeded with microchip lasers •Near diffraction-limited beam profiles (M 2<1.2) •Peak power >1.2MW achieved with 0.38ns pulses •Pulse energy >1.1mJ achieved with 2.3ns pulses •High peak fluence of 410J/cm2 reached

Roger L. Farrow et al., *"High-Peak-Power (>1.2MW) Pulsed Fiber Amplifier*", Photonics West: Fiber laser III, Technology, Systems & Applications (6102), Session 7, paper 6102-22.

EXPERIMENT

Extremely *flat refractive index profile* **and uniform doping push the limits of LMA fibers**

- •Liekki Yb-DCF with 80µm core, 400µm clad
- Near diffraction-limited beam ($M²$ < 1.2) achieved
- •Largest demonstrated mode area (2750-µm2) with single-transverse-mode operation
- •Highest (still?) reported peak powers (>6MW with sub-ns pulses)
- •High average power scaling up to 85W with MW pulses
- •Achieved peak powers beyond expected fiber optical (self-focusing) damage threshold

Kai-Chung Hou et al.,"*Multi-MW Peak-Power Single-Transverse Mode Pulse Generation with an Yb-doped LMA Fiber Amplifier*", Photonics West: Fiber laser III, Technology, Systems & Applications (6102), Late breaking development session, paper LBD2, Tuesday 24th, 4:40PM

DEVELOPMENT

Radial doping – further power scaling through preferential gain for the fundamental mode

Mircea Hotoleanu et al.," *High Order Mode Suppression in Large Mode Area Active Fibers by Controlling the Radial Distribution of Rare Earth Dopant*", Photonics West, Fiber laser III, Technology, Systems & Applications (6102), Paper 6102-64, Thursday 26th, 5:30pm.

Polarization maintaining DC fibers for highenergy amplification

- •Yb1200-20/125DC-PM
- •Birefringence: 1*10^-4, PER >16dB
- •Less than 2m application lenght
- •Combiner in development

 $E > 1$

Fluorosilicate "all-glass" coating for highpower applications

Polished fiber endface

Features

- •"Yb1200-20/400/460DC all-glass"
- •Modular, builds on Yb1200-20/400DC
- •Fluorosilicate glass cladding with NA 0.22
- •"True" octagonal inner cladding good pump absorption maintained along fiber

 \equiv KK

- •Tested (end pumped) up to 700W of lauched power
- •Matched all-glass passive delivery fiber + FBGs in development

•"Yb1200-30/300/360DC all-glass" •Modular, builds on Yb1200-25/250DC-PM •Experimental fiber

IN DEVELOPMENT

Phosphosilicate glass host for high concentration Yb and Er:Yb fibers

Emission from Er/Yb preform, 920nm pump

•P2O5 glass has higher RE-ion solubility than Al2O3 (~3x concentration)

 \blacksquare

- shorter fibers (...but also ½x crosssections)
- higher extractable energy
- lower photodarkening
- •High P2O5 doping (>10mol%) required
	- increases index (core NA)
	- volatile, results on core burnout
- •Advantages of DND
	- minimizes clustering (Er+Yb!)
	- reduces/eliminates core burnout
	- up-doped cladding for lower core NA
- Status (Er:Yb fiber)
	- 94% transfer efficiency from Yb to Er
	- In progress: first fibers drawn and tested

EXPERIMENT

\blacksquare Kk

DND made Yb-DCF's demonstrated high efficiency and beam quality -

- •High-doped Yb-DCF, 20µm core with NA of 0.07
- •High power conversion efficiency (>80%)
- Excellent beam quality (M² < 1.1)
- •Improvements still needed

Beam profile measurement

A new high-efficiency, LMA Erbium double clad (Er-DC) fiber Er60-20/125DC for 980 nm pumping

- •First high-efficiency, LMA Er-DC product
- •Power scalable for Eye-safe military,medical and industrial applications
- •Clearly better efficiency then with conventional Er:Yb codoped fibers

 $-<$ $<$

Sandia Experiments with Liekki 30 µm Fiber

- • Simple system architecture suitable for practical applications
	- single-stage, single-pass amplification
	- –passive Q-switching
	- –cw pumping

–

Mode-filtered fiber amplifier [J.P. Koplow *et al*., Opt. Lett. **25**, 442 (2000); U.S. Patent 6,496,301]

Nd:YAG Microlaser Seed Sources

 \bullet Nonlinear processes in fiber amplifier are sensitive to linewidth and pulse duration in the \sim 1 ns range

Experimental Results

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Highest reported peak irradiance: $\frac{440 \text{ GW/cm}^2}{2}$ Highest reported peak fluence: $\frac{410 \text{ J/cm}^2}{2}$

Consistent with recent preform damage-threshold measurements

R.L. Farrow *et al*., Photonics West 2006, Proc. of SPIE 6102, Paper 0L

Sandia Pulsed Fiber Amplifier Model

- • ZT model
	- no transverse dependence
- • Initial inversion profile from Z model
	- simplified two-level rate equations
	- –includes ASE
	- spectrally resolved
- \bullet Transient BPM model
	- – includes GVD, SPM, and saturable gain
	- – employs measured bend loss
	- – no adjustable parameters

Sandia Damage Threshold Measurements

- • Samples of high-purity fused silica and Liekki fiber preforms
- •Surface and bulk damage measurements
- \bullet Fused-silica bulk damage threshold $=$ 470 GW/cm²
- •Yb-doped core damage threshold = 640 GW/cm²
	- reconciles pulsed fiber-amplifier results (440 GW/cm2)

PHOTODARKENING

Fibers made with DND show superior performance in head-on comparison

•Comparison made with Ytterbium concentration of roughly 1.1wt%

PHOTODARKENING RATE

What drives photodarkening?

- • **In many photodarkening studies, several parameters are changed simultaneously or are poorly constrained**
- **Background:** Core pumping results showed that when inversion saturates, photodarkening rate saturates
- **Hypothesis:** Inversion level is the dominant parameter determining the photodarkening rate
- • **The procedure to test our hypothesis:**
	- *Provide flat and tunable inversion to fiber samples*
	- *Measure photodarkening rate as a function of inversion level for multiple fibers*

Photodarkening rate between measurements must be comparable

EKK

PHOTODARKENING RATE

Higher inversion leads to faster photodarkening

Methods for benchmarking are simple

IEKK

PHOTODARKENING RATE

Photodarkening rate has a 7th-order dependence on inversion

- •Two fibers with different Yb concentrations
- •The rate constant can be parameterized with a single variable, inversion

PD rate \propto inversion⁷

APPLICATIONS

A given fiber will have very different photodarkening rates under different operating conditions

Summary of benchmarking measurement conditions

 $L = K < K$

Photodarkening - Conclusions

- 1) Benchmarking of photodarkening is feasible for single-mode fibers and for LMA fibers
- 2) Photodarkening rate constant was found to depend strongly on a single variable: inversion
- 3) Rate constant follows a simple power law
	- ~7th order dependence on inversion
	- May indicate a single mechanism for color center formation
- 4) High inversion dependence of photodarkening has significant implications to fiber devices
	- $\bullet~$ Amplifiers may photodarken up to10 5 -10 7 times faster than cw lasers
- 5) A uniform inversion is important in photodarkening measurements
	- Quantitative analysis difficult from a sample with spatially variable inversion

Photodarkening - the Oulook

• The conspiracy of silence is over

- No reason to underestimate the impact of a steady, unpredictable degradation mechanism on commercial fiber laser acceptance
- Better to perhaps solve the problem?
- Increasing number of papers on the issue from different groups
- Indications that the magnitude and rate of PD is highly glass composition and process dependent

• How to cure photodarkening?

- The same way it's been done with other materials consistent hard work, lots of patience and support from the laser community and research institutions
- Some indications that photodarkening is substantially reduced in phosphosilicate fibers - but at what price?
	- **There is no free lunch even for fibers!!**
- Temperature annealing may be feasible but is it practical?

PHOTODARKENING

Photodarkening reduces system performance and reliability

What is photodarkening?

- Permanent* light-induced change in the absorption of glass
- A multi-photon process involving a rare-earth (RE) ion
- Seen (at least) in Tm $3+$, Yb $3+$, Ce³⁺, Pr³⁺ and Eu²⁺-doped RE-doped silica glasses

Photodarkening induced excess loss in Yb-doped silica glass

 \blacksquare

* High temperature annealing demonstrated: Jasapara et al., OFC '06, CTuQ5

7th power dependency holds for [Yb*] as well

• [Yb] = Ytterbium ion density, ions/m 3 Ω \Box Fiber #1, higher [Yb] • $[Yb^*] = [Yb]$ * inversion, $\overline{}$ **log(1/tau [1/s])** ● Fiber#2, lower [Yb] log(1/tau [1/s] -1excited state number density, ions/m 3 -2 • Intercomparison of glass compositions and -3manufacturing technologies possible for the first time -4 25.4 25.6 25.8 26 26.2• Glass homogeneity of importance! **log([Yb*])**

30 min photodarkening measurement is repeatable

Average repeatability +/- 6%

 \equiv KK

\blacksquare

DND: doping uniformity in preform

- •Core consists of about 100 layers
- •The concentration variation within +- 5%
	- –Temperature nonuniformity in the reaction volume
	- –Process controlling at process start

\equiv K

DND fibers: very short C-band fiber

- •Uniform doping enables high doping with moderate upconversion
- •Absorption 100 dB/m @ 1530 nm
- •Fiber length 0.58 m
- •Pump 110 mW @ 980 nm
- •QCE 21 % @ 0dBm input

DND fibers: Yb doped fibers

- •Core / Cladding ratio is 6/125
- •Core absorption about 2000 dB/m
- •Pump absorption 1.4 dB/m @ 920 nm

DND for Active FibersMore Conclusions

.IEEKK

Completely new process, ideally suited for power scaling

- –Homogeneous, high doping
- –Excellent RIP control, 100s on nanoparticle layers
- –Rapid development cycle, large LMA preforms good economics
- –Higher photodarkening threshold than other aluminosilicate based MCVD fibers
- –potential for core platform based manufacturing process a new approach to mass customization of new wave guiding structures

DND fibers provides clear application benefits

- –Diffraction-limited beam quality up to 80µm cores
- –Peak fluences >410 J/cm²
- –Peak power >6MW & mJ pulse energies with nanosecond pulses

Process still at the beginning of the "learning curve"

- –Ideal for LMA fibers, unique radial doping feature
- –Manufacturing process no longer limits the designers imagination!