DND Technology - a Core platform for Specialty Mode Guiding Structures

H.J. Hoffman^a, M. Söderlund^a, J. Koponen^a, D. A. V. Kliner^b, and J. Koplow^b

^a Liekki Corporation, Sorronrinne 9, FI-08500 Lohja, Finland
 ^b Sandia National Laboratories, Livermore, California

SPRC '06, Stanford, 20 September 2006

Copyright Liekki Corporation, Sorronrinne 9, FI-08500 Lohja, Finland

www.liekki.com

Synopsis

- •What's DND and why is it good for you
- •Comparisons with other processes
- •DND made DC fibers performance
- New developments and new potential
- •Photodarkening measurements
- •Conclusions

ILLUSTRATIVE

Active fibers very different from Telecom fiber much more required from manufacturing Process

Simple geometry

- <u>Double clad, dual coated</u>
- Novel geometries, stress rods for PM

www.liekki.com 3

Processes used for specialty fiber fabrication

PROCESS	METHOD	RE?	RE DELIVERY	DOPING METHOD
			(to soot)	
OVD*	Hydrolysis	(X)	Aerosol/Vapor/Solution	Diffusion
VAD*	Hydrolysis	(X)	Aerosol/Vapor/Solution	Diffusion
PCVD	Oxidation	?		
MCVD*	Oxidation	Х	Solution/Vapor(/Chelate)	Diffusion
DND	Hydrolysis	Х	Liquid droplets (Aerosol)	Direct doping

*Fundamental problems in delivering RE ions to reaction zone – delivery temperatures of ~200 degC required.

Optical fiber fabrication methods

Process	Users
Modified Chemical Vapor Deposition – MCVD	OFS, Fibercore
Vapor Axial Deposition – VAD	Shin-Etsu
Plasma Chemical Vapor Deposition – PCVD	Draka
Modified Chemical Vapor Deposition – MCVD	IPG, Nufern, SPI
Direct Nanoparticle Deposition – DND	Liekki
Outside Vapor Deposition – OVD	Corning

Specialty Fibers

MCVD with solution doping is cumbersome

Flame Hydrolysys Techniques - VAD and OVD

- Si and waveguiding dopants typically delivered as Chlorides
- Rare Earths (RE) can (in principle) be delivered as vapors, aerosols or solution
- RE's tend to cluster limited doping concentration (equipment modifications may help but at cost of increased complexity)
- Economics for modified version used for specialty fibers (Corning) still TBD
- Flame hydrolysis techniques suitable for large volume telcom grade fibers but lack flexibility

OVD/VAD vs MCVD Process

OVD / VAD

- Doping during soot deposition
- flame hydrolysis => large particles

MCVD

- doping after soot deposition
- oxidation => small particles

Reference: "Optical Amplifiers: materials, devices, and applications", Shoichi Sudo editor, Artech House 1997

Outside vapor deposition (OVD) is telecomproven technique of producing reliable optical fiber

What nanoparticle technology provides

Key Process Advantages

- Possible to use both high and low vapor pressure raw materials
- Good homogeneity of the sintered glass
- Homogeneous sites for the rare-earth ions
- A nanoparticle generation and deposition process offers great flexibility

Process Challenges

- · Agglomeration can limit the nanoparticle generation speed
- Small particle size moderates growth rate --> trade-off against accuracy, yield

DND Fiber Preform Manufacturing Principles

Liekki DND process: a breakthrough approach to manufacturing Guided Wave Structures

Liekki Direct Nanoparticle Deposition (DND) process overview

Unique patented process

 Combustion of gaseous and atomized liquid raw materials
 --> All-liquid sources possible
 --> Greater flexibility for RE doping

 Accurate control of the doping profile – flat refractive index profile (RIP) --> Ideal for Large Mode Area (LMA)

 High dopant concentrations —-> shorter application lengths

Liekki's DND process uses nanoparticle deposition for highly controllable doping

Liekki DND process overview

Process features

- Direct, single-step doping process
- Creates 100s of doped nanoparticle layers in core - superior consistency, minimizes clustering --> high doping

- Simultaneous and independent radial control of guiding (indexeffecting) and active dopants
- Rapid process, LMA core in matter of hours
- Can be readily adapted to noncircular structures (rectangular)

S. Tammela et al., "Potential of nanoparticle technologies for next generation erbium-doped fibers" OFC'04, OFC2004 Technical digest, FB5 (2004)

DND technology is a breakthrough in fiber manufacturing process capability

Incumbent MCVD process

- 35 years in industrialization at end of S-curve
- Designed for traditional small core telecom fiber production
- Large particle size = microns
- Typically an in-tube deposition process
- Solution diffusion of dopants into glass few layers of doped material, clustering
- Moderate doping of active elements
- Slow, multi-step process for large cores
- · Moderate threshold to photodarkening
- · Control of radial doping profile difficult
- Complex process required for flat RIP and elimination of core burn out
- · Limited to round fiber core geometries

DND fiber process

- 6 years into industrialization at beginning of S-curve
- Designed for advanced highly doped large mode area fiber production

- Small particle size = nanometers
- Outside-tube deposition process
- Direct deposition of dopants within glass 100s of layers doped material, no clustering
- Highest possible doping of active elements
- Fast direct deposition of large cores
- High threshold to photodarkening
- Accurate radial control of doping profile
- Inherent flat RIP and no core burn out
- Square fiber core geometries and planar designs possible

Homogeneous fiber core – crucial for fiber application performance

Fiber made with Liekki DND technology

- Homogeneous doping, 100s of layers
- High doping, low clustering
- No core burn-out
- Sharp geometry, large core/clad possible

High Doping Control Required for Flat RIP --> Key Goal for LMA Fibers: Eliminate Core Burn-Out

Profile variation along preform < ± 5%

Radial profile control for improved LP01 tranmission/amplification

M^2 ~1.6 for 25µm, 0.065 NA

- Preferential gain for LP01 by matching doping with fundamental mode
- LAD used to optimize the doping profile for a straight fiber
- Up to 7dB higher gain for LP01 vrs next mode in 25µm core expected
- Constrained by mode distortion/offset when fiber is bent
- M^2 ~1.6 measured with loosly coiled (20cm diameter) 25µm core fiber

ILLUSTRATIVE

Exploit DND's <u>independent</u> and <u>accurate</u> control of both doping profile and RIP

- Step index RI
- Normal or confined doping
- No radial control
- Beam quality may suffer from core burnout

- Very flat RI, no core burnout
- Doping optimized for LP01 preferential gain
- Good beam quality, no core burnout

- Radial control of both RI and doping
- Large core single mode

DND capabilities match up well with advanced high-power fiber laser requiremements

Requirement	DND technology	Conventional technologies (MCVD, solution doping)
Increasing peak and average power levels (power scaling)	High-dopingShort fibers	Medium/low dopingMedium/long fibers
Improved power and thermal efficiency	High efficiencyGood power tolerance	 High efficiency
Improved beam quality	 Accurate and independent RIP control, rapid single- step process 	 Poor/laboursome RIP control, iterative process
Improved product quality and lifetime	 Much improved photodarkening resistance Large core-to-clad ratio LMA preforms/fibers 	 Poor photodarkening performance (except phosphosilicate?) Limited core-to-clad ratios

DND process capabilities offer even more potential for advanced fiber manufacturing - e.g., core platform!

What Nanoparticle Technology can Provide

Nanoparticle	Growth glass	Benefits in fiber	
process	Homogeneous doping of active elements	Higher doping possibleShorter fiber required for laser applicationLower cost	
Precise control	Large variations of doped glass composition	 Better performance on Bending loss, PMD and nonlinear effects 	
of nanoparticle growth process		Simpler glass structureUniform local environment for the RE ions	
	Accurate and independent control of doping concentration profile	 Repeatable spectral properties Homogeneity and control on refractive index Less mode coupling in LMA fibers 	
	Better preform consistency	Short and large diameter core preforms LMA fibers with small core/cladding rati Simpler glass work 	
External deposition	Preform geometry is a flexible parameter	Outside-the-tube Deposition Potential for Core Platform - A new paradigm in active fiber manufactu 	

www.liekki.com 20

NANOPARTICLE TECHNOLOGY ADVANTAGES SUMMARY

Nanoparticle technology provides

Possibility of using high and low vapor pressure materials simultaneously
Potential to produce uniform material both in nano- and macroscopic scale
Independent selection of deposition process and preform geometry

New types of doped/undoped waveguide structures

-Scalability - process speed, yield, geometries, performance

To rare-earth doped fibers this means

-Higher concentrations, shorter fibers, less non-linearity and dispersion

- –Potential for lowering susceptibility to photodarkening and other degradation mechanisms by more precise engineering of compositions
- -Better uniformity in doping and in spectral properties
 - Within fiber, both in lateral and longitudinal
 - From fiber to fiber
- -Simpler preform glass work
- -Wide range of core/cladding ratios (small to large)

The Road toward Mass Customization -Streamlining of Fiber manufacturing Process

- Market for LMA Fibers is highly fragmented Broad requirements trade space, high demand for custom fibers
 - So many different fibers, so few standards
 - Little commonality between vendors' definitions of fiber attributes (doping level, fiber efficiency, polarization, etc.)
 - In-fiber components need to be developed for each class of fiber
- Mass Customization model needed for manufacturing a broad :variety of fibers optimized for different applications
 - Core sizes that range from SMF to very large mode areas (100 μ m)
 - Different core-to-clad ratios for different applications using different pumping methods
 - <u>The challenge</u>: optimize core and clad separately would streamline process
 - Examples: One core different claddings All glass, PM, raised, coatings
 - Requires process with fast preform production and advanced draw technology (sleeving)
 - <u>Advantages</u>: Customization of product moved down the fabrication steps (final draw)
 - Provide custom fibers without sacrificing overall yields --> Better process economy
 - A uniform production environment for both standard and custom waveguides
 - Improve availability of in-fiber components(e.g., FBG's) and matched passive structure

DND COMPATIBLE WITH CORE PLATFORM

- External deposition allows stocking separate core preforms designed to different specifications
 - Variations may include; alternate compositions, doping concentrations/ profiles, range of NA'S, different dimensions. ranked quality ratings
 - Offer high degree of selectivity, e.g., for CW vs.pulsed applications
 - Rapid deposition process will allow highest resistance to photodarkening
- Single core preform can be used for several different clad structures
 - Greatly improved process economies
 - -Sleeving
 - New fabrication paradigm for lasers: mass customization at affordable prices the right thing for a highly fractured (but idea-rich) market?
- Wide applicability to circular and non-circular structures
 - Can be used for all circular fiber types, including PCF's
 - Can be modified for planar wave guiding structures (fiber and/or wafer)
 - a new approach to mass customization of wave-guiding structures

Brief history of Liekki

- Early 1990s DND research initiated
- 1999 Company founded
- 1999-2002 Focus on telecom, Er
- 2003-2005 Extension to laser market, Yb
- Today

- * Full-blown Yb-DCF(-PM) LMA product range
- * Erbium fibers
- * Mached passives & FBGs
- * Optical Engines
- * Liekki Application Designer software (LAD)
- * Photodarkening Measurements
- * Radial doping capability

EXPERIMENT

Highly-doped DND Er fibers demonstrated <u>low clustering</u> and high-efficiency in 2001-2

- •Liekki among first to released highly-doped Er-fibers in 2002
- Much reduced length, 22m vrs
 ~70m (conventional Er-fiber)
- •Low level of Er-ion clustering
- •Very high L-band efficiency with QCE: 65%

S. Tammela et al., "Very short Er-doped silica glass fiber for L-band amplifiers," OFC'03, OFC2003 Technical digest, 1, 376-377 (2003)

EXPERIMENT

Higher doping means improved performance and shorter fiber

Comparison of Er fiber gain profiles for different wavelengths

Same or better performance with 60% less fiber!

Beneficial Features

- Higher gain per unit length, up to 70% less fiber needed
 lower materials and assembly cost
- Shorter fiber less undesired nonlinearity and PMD effects
- Flat and wide gain spectrum makes wide band design easy – less cost for gain flattening filters (Telecom)
- Good splicing characteristics – easy to use in production

Reliable and repeatable process - excellent fiber consistency <u>along</u> and <u>across</u> preforms

DND fibers: ASE source

The broad band gain bandwidth results also broad ASE sources
When the gain at C and L band are close enough it is possible to make C+L band ASE source using one active fiber

Current Liekki fiber capabilities

Er, Yb, Er/Yb, Nd, Tm doped specialty fibers
High-doping concentrations – short fibers
SM to LMA cores (100+ µm)
Cladding dimensions from 50µm to 1+mm
Panda PM fibers (active/passive)
Photosensitive fibers (SM/LMA)
Radial/confined doping for LP01 preferential gain
Phosphosilicate fibers (in progress)
Rectangular fibers (diode delivery/active)
Fluorosilicate all-glass + high T coatings
Specialty components (stress rods, ASE filters, FBGs...)
Doped nanoparticles, soot & preforms

Ongoing Research & Development activities

- Type-testing of double clad fibers (T, OH, bending)
- High-temperature coatings (polyimide, copper, ...)
- Optical/radiation damage limits of doped fibers
- In-fiber combiner solutions
- Flat waveguide Fiber designs for single-aperture power scaling
- Alternative soot deposition/collection methods
- Planar Integrated Waveguides

EXPERIMENT

Yb-doped DND fibers feature high *pump absorption* and excellent *power tolerance*

Highly-doped Liekki Yb1200-30/250DC
Pump absorption ~15dB/m at 976nm
Single-stage amplifier seeded with microchip lasers
Near diffraction-limited beam profiles (M²<1.2)
Peak power >1.2MW achieved with 0.38ns pulses
Pulse energy >1.1mJ achieved with 2.3ns pulses
High peak fluence of 410J/cm² reached

Roger L. Farrow et al., *"High-Peak-Power (>1.2MW) Pulsed Fiber Amplifier*", Photonics West: Fiber laser III, Technology, Systems & Applications (6102), Session 7, paper 6102-22.

EXPERIMENT

Extremely *flat refractive index profile* and uniform doping push the limits of LMA fibers

- •Liekki Yb-DCF with 80µm core, 400µm clad
- Near diffraction-limited beam (M² <1.2) achieved
- •Largest demonstrated mode area (2750-µm²) with single-transverse-mode operation
- Highest (still?) reported peak powers (>6MW with sub-ns pulses)
- High average power scaling up to 85W with MW pulses
- Achieved peak powers beyond expected fiber optical (self-focusing) damage threshold

Kai-Chung Hou et al.,"*Multi-MW Peak-Power Single-Transverse Mode Pulse Generation with an Yb-doped LMA Fiber Amplifier*", Photonics West: Fiber laser III, Technology, Systems & Applications (6102), Late breaking development session, paper LBD2, Tuesday 24th, 4:40PM

DEVELOPMENT

Radial doping – further power scaling through preferential gain for the fundamental mode

Mircea Hotoleanu et al.," *High Order Mode Suppression in Large Mode Area Active Fibers by Controlling the Radial Distribution of Rare Earth Dopant*", Photonics West, Fiber laser III, Technology, Systems & Applications (6102), Paper 6102-64, Thursday 26th, 5:30pm.

Polarization maintaining DC fibers for highenergy amplification

- •Yb1200-20/125DC-PM
- Birefringence: 1*10^-4, PER >16dB
- •Less than 2m application lenght
- Combiner in development

Fluorosilicate "all-glass" coating for highpower applications

Polished fiber endface

Features

- "Yb1200-20/400/460DC all-glass"
- Modular, builds on Yb1200-20/400DC
- Fluorosilicate glass cladding with NA 0.22
- "True" octagonal inner cladding good pump absorption maintained along fiber

- Tested (end pumped) up to 700W of lauched power
- Matched all-glass passive delivery fiber + FBGs in development

"Yb1200-30/300/360DC all-glass"
Modular, builds on Yb1200-25/250DC-PM
Experimental fiber

IN DEVELOPMENT

Phosphosilicate glass host for high concentration Yb and Er:Yb fibers

Emission from Er/Yb preform, 920nm pump

• P2O5 glass has higher RE-ion solubility than Al2O3 (~3x concentration)

- shorter fibers (...but also ½x crosssections)
- higher extractable energy
- lower photodarkening
- High P2O5 doping (>10mol%) required
 - increases index (core NA)
 - volatile, results on core burnout
- Advantages of DND
 - minimizes clustering (Er+Yb!)
 - reduces/eliminates core burnout
 - up-doped cladding for lower core NA
- Status (Er:Yb fiber)
 - 94% transfer efficiency from Yb to Er
 - In progress: first fibers drawn and tested

EXPERIMENT

DND made Yb-DCF's demonstrated high <u>efficiency</u> and <u>beam quality -</u>

- \bullet High-doped Yb-DCF, 20 μm core with NA of 0.07
- High power conversion efficiency (>80%)
- Excellent beam quality ($M^2 < 1.1$)
- Improvements still needed

Beam profile measurement

A new high-efficiency, LMA Erbium double clad

(Er-DC) fiber Er60-20/125DC for 980 nm pumping

- First high-efficiency, LMA Er-DC product
- •Power scalable for Eye-safe military, medical and industrial applications
- •Clearly better efficiency then with conventional Er:Yb codoped fibers

Sandia Experiments with Liekki 30 μm Fiber

- Simple system architecture suitable for practical applications
 - single-stage, single-pass amplification
 - passive Q-switching
 - cw pumping

Mode-filtered fiber amplifier [J.P. Koplow *et al.*, Opt. Lett. **25**, 442 (2000); U.S. Patent 6,496,301]

Nd:YAG Microlaser Seed Sources

 Nonlinear processes in fiber amplifier are sensitive to linewidth and pulse duration in the ~1 ns range

Experimental Results

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Highest reported peak irradiance: <u>440 GW/cm²</u>

Highest reported peak fluence: <u>410 J/cm²</u>

Consistent with recent preform damage-threshold measurements

R.L. Farrow et al., Photonics West 2006, Proc. of SPIE 6102, Paper 0L

Sandia Pulsed Fiber Amplifier Model

- ZT model
 - no transverse dependence
- Initial inversion profile
 from Z model
 - simplified two-level rate equations
 - includes ASE
 - spectrally resolved
- Transient BPM model
 - includes GVD, SPM, and saturable gain
 - employs measured bend loss
 - no adjustable parameters

Sandia Damage Threshold Measurements

- Samples of high-purity fused silica and Liekki fiber preforms
- Surface and bulk damage measurements
- Fused-silica bulk damage threshold = 470 GW/cm²
- Yb-doped core damage threshold = 640 GW/cm²
 - reconciles pulsed fiber-amplifier results (440 GW/cm²)

PHOTODARKENING

Fibers made with DND show superior performance in head-on comparison

Comparison made with Ytterbium concentration of roughly 1.1wt%

PHOTODARKENING RATE

What drives photodarkening?

 In many photodarkening studies, several parameters are changed simultaneously or are poorly constrained

- Background: Core pumping results showed that when inversion saturates, photodarkening rate saturates
- Hypothesis: Inversion level is the dominant parameter determining the photodarkening rate
- The procedure to test our hypothesis:
 - Provide flat and tunable inversion to fiber samples
 - Measure photodarkening rate as a function of inversion level for multiple fibers

Photodarkening rate between measurements must be comparable

Amount of Yb ions Pump brightness Doping concentration •Core pumping •Core diameter Cladding pumping •Sample length Inversion of the sample = photodarkening rate **Glass** composition •Emission and Pump wavelength absorption cross sections

PHOTODARKENING RATE

Higher inversion leads to faster photodarkening

www.liekki.com 48

Methods for benchmarking are simple

PHOTODARKENING RATE

Photodarkening rate has a 7th-order dependence on inversion

- •Two fibers with different Yb concentrations
- •The rate constant can be parameterized with a single variable, inversion

PD rate \propto inversion⁷

APPLICATIONS

A given fiber will have very different photodarkening rates under different operating conditions

www.liekki.com 51

Summary of benchmarking measurement conditions

	Core pumping method	Cladding pumping method
Preferred fiber type	Single-mode, single clad	LMA, double clad
Pump brightness	Higher	Lower
Inversion of the fiber	Saturated •Not pump power dependent •Defined by the ratio of absorption/emission cross sections	Non-saturated •Inversion tunable with pump power •Defined mainly by the absorption cross section
Inversion at 920nm	Higher (up to >90%)	Lower (pump power dependent)
Inversion at 976nm	Lower (up to >40%)	Higher (pump power dependent)

Photodarkening - Conclusions

- 1) Benchmarking of photodarkening is feasible for single-mode fibers and for LMA fibers
- 2) Photodarkening rate constant was found to depend strongly on a single variable: inversion
- 3) Rate constant follows a simple power law
 - ~7th order dependence on inversion
 - May indicate a single mechanism for color center formation
- 4) High inversion dependence of photodarkening has significant implications to fiber devices
 - Amplifiers may photodarken up to10⁵-10⁷ times faster than cw lasers
- 5) A uniform inversion is important in photodarkening measurements
 - Quantitative analysis difficult from a sample with spatially variable inversion

Photodarkening - the Oulook

The conspiracy of silence is over

- No reason to underestimate the impact of a steady, unpredictable degradation mechanism on commercial fiber laser acceptance
- Better to perhaps solve the problem?
- Increasing number of papers on the issue from different groups
- Indications that the magnitude and rate of PD is highly glass composition and process dependent

How to cure photodarkening?

- The same way it's been done with other materials consistent hard work, lots of patience and support from the laser community and research institutions
- Some indications that photodarkening is substantially reduced in phosphosilicate fibers but at what price?
 - There is no free lunch even for fibers!!
- Temperature annealing may be feasible but is it practical?

PHOTODARKENING

Photodarkening reduces system performance and reliability

What is photodarkening?

- Permanent* light-induced change in the absorption of glass
- A multi-photon process involving a rare-earth (RE) ion
- Seen (at least) in Tm³⁺, Yb³⁺, Ce³⁺, Pr³⁺ and Eu²⁺-doped RE-doped silica glasses

Photodarkening induced excess loss in Yb-doped silica glass

* High temperature annealing demonstrated: Jasapara et al., OFC '06, CTuQ5

7th power dependency holds for [Yb*] as well

• [Yb] = Ytterbium ion density, ions/m³ 0 □ Fiber #1, higher [Yb] • [Yb*] = [Yb] * inversion, -0----• Fiber#2, lower [Yb] log(1/tau [1/s] -1 excited state number density, ions/m³ -2 Intercomparison of glass compositions and -3 manufacturing technologies possible for the first time -4 25.425.6 25.8 26 26.2 Glass homogeneity of importance! log([Yb*])

30 min photodarkening measurement is repeatable

Average repeatability +/- 6%

DND: doping uniformity in preform

- •Core consists of about 100 layers
- •The concentration variation within +- 5%
 - -Temperature nonuniformity in the reaction volume
 - Process controlling at process start

DND fibers: very short C-band fiber

- Uniform doping enables high doping with moderate upconversion
- •Absorption 100 dB/m @ 1530 nm
- •Fiber length 0.58 m
- •Pump 110 mW @ 980 nm
- •QCE 21 % @ 0dBm input

DND fibers: Yb doped fibers

- •Core / Cladding ratio is 6/125
- •Core absorption about 2000 dB/m
- •Pump absorption 1.4 dB/m @ 920 nm

DND for Active Fibers More Conclusions

Completely new process, ideally suited for power scaling

- -Homogeneous, high doping
- -Excellent RIP control, 100s on nanoparticle layers
- -Rapid development cycle, large LMA preforms good economics
- –Higher photodarkening threshold than other aluminosilicate based MCVD fibers
- -potential for core platform based manufacturing process a new approach to mass customization of new wave guiding structures

DND fibers provides clear application benefits

- -Diffraction-limited beam quality up to 80µm cores
- –Peak fluences >410 J/cm²
- –Peak power >6MW & mJ pulse energies with nanosecond pulses

Process still at the beginning of the "learning curve"

- -Ideal for LMA fibers, unique radial doping feature
- -Manufacturing process no longer limits the designers imagination!