
KW-class Industrial Lasers Comprised of Single Emitters

Kirk Price, Frank Pfeffer, Paul Leisher, Scott Karlsen, Steve Patterson, Robert Martinsen

Photonics West, 2010

- Overview of industrial diode laser systems
- Fiber coupled single emitter packages
- KW approaches
- Demonstrations
- Conclusion

- First significant change in diode laser architecture
- Efficiency > 50%
- Passively cooled, no microchannel heat sinks

 $n \perp$

G

- CS bar based
- Direct water cooling required for 30-45% efficient bars
- Standard high power diode lasers
- Actively cooled micro-channel heat sinks
- Bar based laser diodes

1995

2009

Efficiency and Thermal Management

Efficiency drives:

- Lower \$/W
- Smaller package size

*n*LIGHT

- Simplified cooling
- Reduced OpEx
- Low rates of

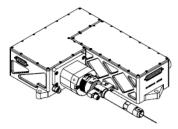
degradation

Broad range of industrial building blocks

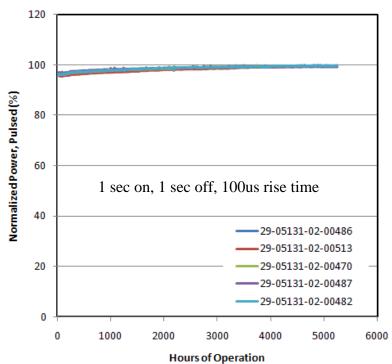
75 W, 20 mm-mrad

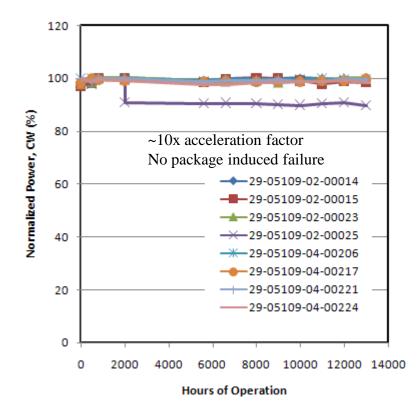
140 W, 20 mm-mrad

120 W, 10 mm-mrad


500W, 20 mm-mrad

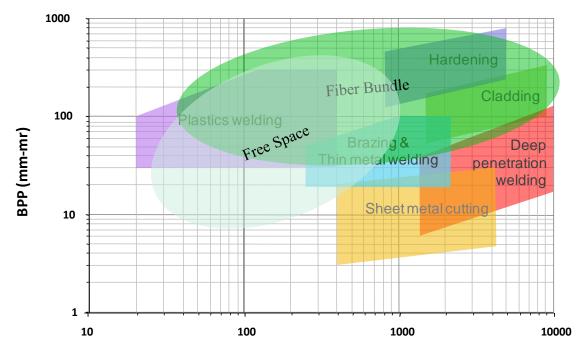
600W, 30 mm-mrad





Reliability of single emitter packages

- Series-wired single emitters soft degradation mode
- Strong reliability under pulsed operation
- High O to O leads to lack of PIF


*n*LIGHT

Free space beam combination

- Provides optimal BPP preservation from diode to fiber
- Marriage of optics and mechanics
 - Can be space and cost intensive

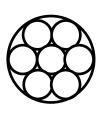
Fiber Bundle

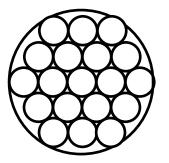
- Easily scalable
- Few parts highly reliable design
- Reduced BPP preservation due to cladding and interstitial loss

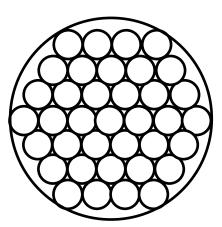
Brightness preservation

 Interstitial and cladding brightness loss

Constant efficiency with scaled output power


BPP: 10 Efficiency: 50%


Power: 100W BPP: 10 Brightness: 100% Efficiency: 50%

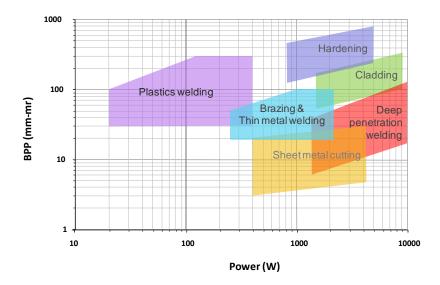

Power: 300W BPP: 20 Brightness: 60% Efficiency: 50%

Power: 700W BPP: 30 Brightness: 68% Efficiency: 50%

Power: 1900W BPP: 50 Brightness: 65% Efficiency: 50%

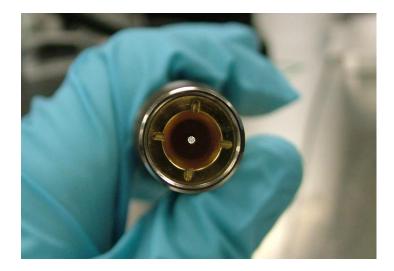
Power: 3900W BPP: 70 Brightness: 67% Efficiency: 50%

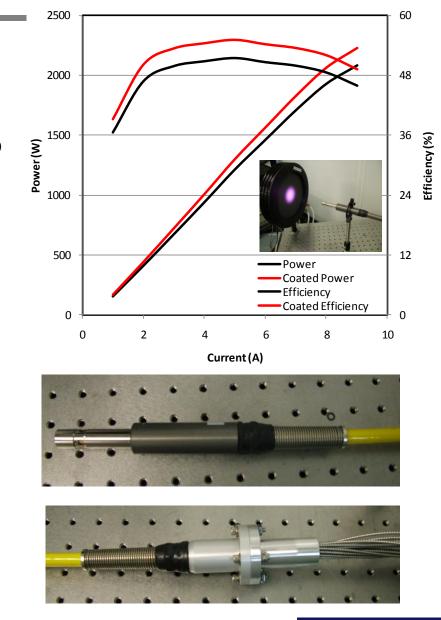
Application space versatility with different building blocks



Brightness Preservation for Fiber Bundles												
Number of Elements	P16, 200um, 0.2 NA			P14, 200um, 0.1 NA			P14, 105um, 0.14 NA			P72, 200um, 0.2 NA		
	Power (W)	BPP (mm-mrad)	Brightness (MW/cm2-str)	Power (W)	BPP (mm-mrad)	Brightness (MW/cm2-str)	Power (W)	BPP (mm-mrad)	Brightness (MW/cm2-str)	Power (W)	BPP (mm- mrad)	Brightness (MW/cm2- str)
1	140	20	3.5	110	10	10.1	100	7.5	18.8	500	20	12.7
3	420	42	2.1	330	21	6.1	300	16	10.3	1500	42	7.6
7	980	(60)	2.4	770	30	6.9	700	22.5	11.5	3500	60	8.7
19	2660	100	2.3	2090	50	6.6	1900	37.5	10.7	9500	100	8.3
39	5460	140	2.4	4290	70	6.8	3900	52.5	11.0	19500	140	8.6

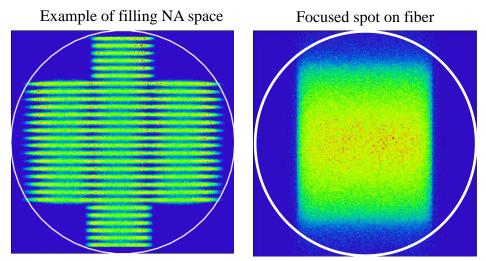
Ultimate flexibility in power and beam quality to optimize for given application

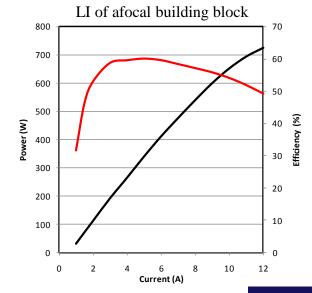

Efficiency remains constant at >= 50%



Viability of fiber bundle technology

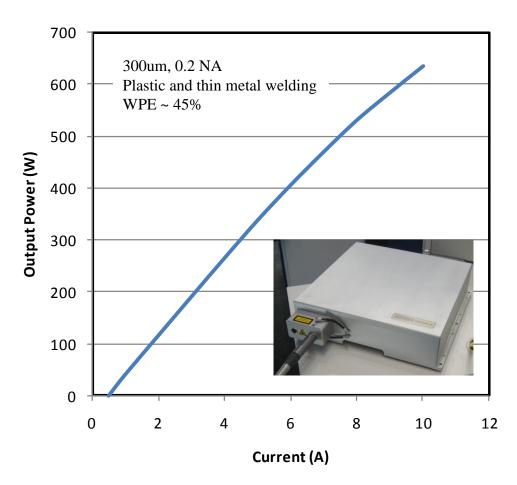
- Fiber bundle integrated in robust, industrial-grade package with armor jacketing
- Fiber to fiber coupling module used to homogenize beam
- >2 KW achieved from 100 mm-mrad BPP
- Easily scalable to higher brightness

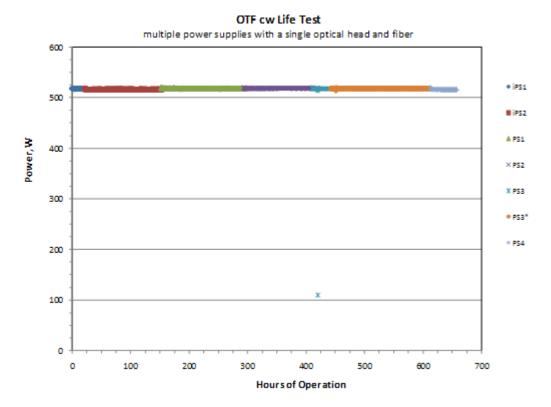



*n*LIGHT

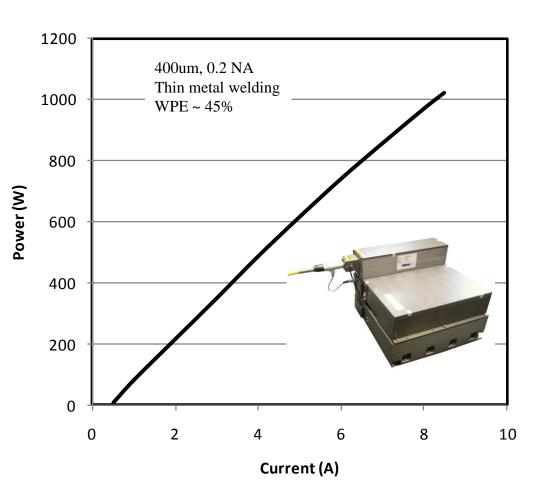
Free space beam combination leads to high brightness sources

- Optimal beam quality preservation with very little dead space
- Flexibility with use of building blocks
- Excellent preservation of diode brightness and efficiency




600 W released product and free-space building block

- >500W CW at >45% WPE
- 30 mm-mrad
 - Single wavelength
 - Single polarization
- Industry leading efficiency and reliability
- Modular power scalability
 - Up to 1 kW 1 λ to 4 kW 4 λ
 - Path to 4 kW 30 mm-mrad with UHB diodes and Pearl modules


*n*LIGH

- Undergoing TUV testing & CE marking of laser head and power supply
- Designed for use in plastics welding, thin metal welding, and pumping applications
- Industrial features
 - Power monitoring
 - Aiming beam
 - Fiber breakage monitor
 - Control electronics and drivers

- Polarization or wavelength multiplexing to achieve 1 KW
- Stacking of two 500W modules
- Excellent preservation of beam quality, brightness, and efficiency

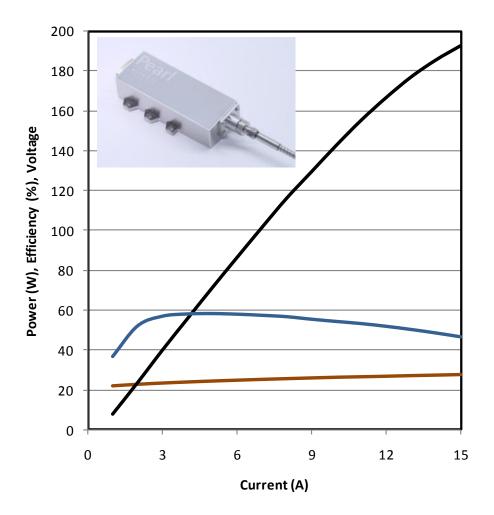
 Multiple systems deployed in an industrial manufacturing environment

 $n \perp$

G

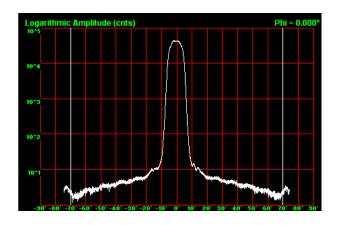
- nLIGHT is actively pursuing direct diode lasers for industrial applications
- Requirements for high brightness and high power systems
 - Free-space optics have optimal brightness
 - Fiber bundles provide easy power scalability
- Both approaches demonstrated to power levels in the KW range

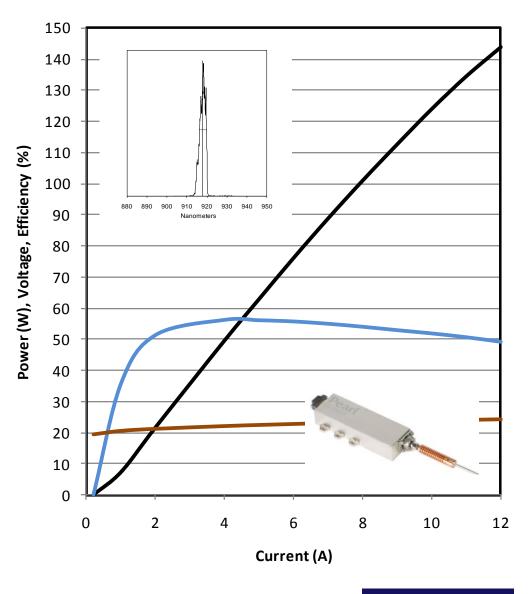
*n*LIGH


Thank you for your attention

Kirk Price Product Development Manager nLIGHT Corporation kirk.price@nlight.net

200um fiber laser pumps, 9xx nm

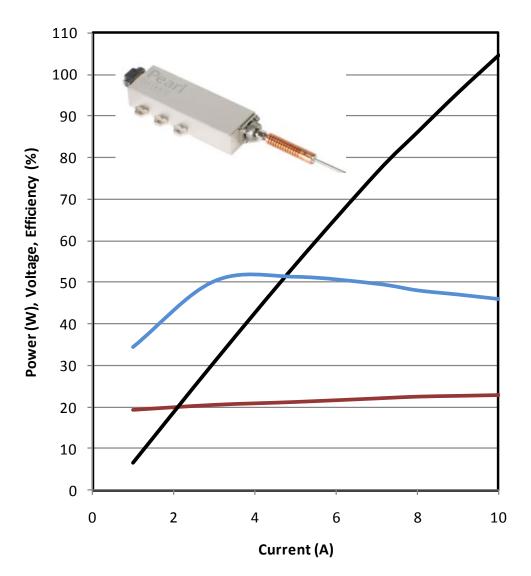

- > 50% WPE at 160 W output power
- Small form factor
- Brilliance = 4.3 MW/cm²-str
- Available from 910 to 980 nm
- 3.5 nm spectral width typical
- No fused fiber combiners



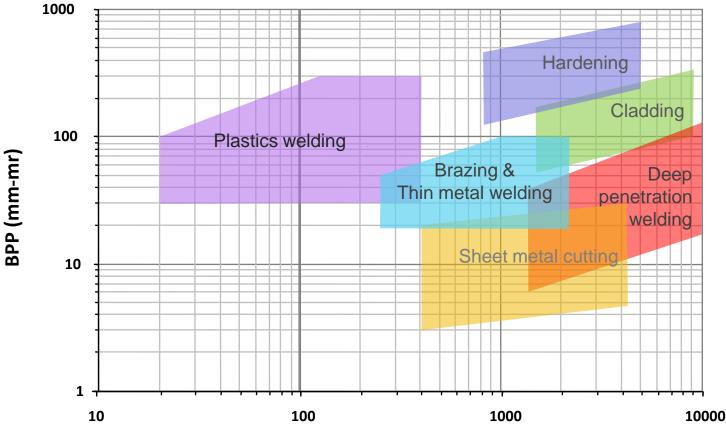
*n*LIGHT

Low NA fiber laser pump source, 200um, 0.1 NA

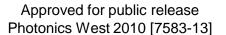
- 120W, 200um, 0.10 NA
- Brilliance = 14 MW/cm²-str
- Excellent direct diode source
- <2% cladding light
- 35 dB 1um isolation
- Enabled novel pump coupling architectures



Approved for public release Photonics West 2010 [7583-13]


n L I G H T

Ultra-high brilliance fiber laser pump


- 100W, 100um, 0.14 NA
- Brilliance = 20 MW/cm²-str
- <2% cladding light
- >45% E to O efficiency
- Compact footprint: 140x50x22 mm
- Also available in100um format:
 - 14xx nm
 - 15xx nm

*n*LIGH

Power (W)

*n*LIGHT

