Fiber laser performance and economics – status and trends for low and high power CW, and pulsed lasers

www.liekki.com

Structure of this presentation

Liekki Corporation – brief introduction

Fiber laser market and the laser industry

Performance, economics, products and some key issues

Conclusion

Liekki – the nanoparticle fiber company

Structure

- Liekki Corp. (Helsinki), subsidiary Liekki Inc. USA (Maryland)
- Founded 1999, factory ISO9001:2000 since 2002

Technology and facilites

- Proprietary fiber manufacturing process Direct Nanoparticle Deposition (DND)
- 16 patent families consisting of 37 granted patents
- 30+ patent applications and several inventions in process
- Full fiber production, module ass'y/integration and QA process
- Laser laboratory for high power testing

Personnel, customers and network

- Experienced team of 35 employees
- Customers include most fiber laser manufacturers worldwide
- Tight links to leading Finnish research institutes and universities
- Development with leading research labs worldwide, incl. Sandia, Univ. Michigan, Fraunhofer (Jena, Aachen), MIT Lincoln Labs

It is not enough to do fibers...

Structure of this presentation

Liekki Corporation – brief introduction

Fiber laser market and the laser industry

Performance, economics, products and some key issues

Conclusion

The last thing we need is more laser science...?

The last thing we need is more laser science...?

To drive growth, laser and systems providers must address increasingly demanding customer requirements

Continuous pressure on price pushing cost structure down

> Flexible and easy-tointegrate platform technology required

Continued fast-paced innovation to increase customer adoptation

Demand for improved quality and reliability

 \equiv

Diode and fiber laser technology with increased integration and ever-more monolithic design may provide solution

Laser types vs. applications - trend

Application	LPSSL	DPSSL & Fiber	DL	CO2	Excimer
High power cutting		\checkmark		\checkmark	
High power welding, surface treatment		\checkmark	\checkmark	\checkmark	
Precision cutting, drilling, metal welding	\checkmark	\checkmark			
Marking		\checkmark		\checkmark	
Other macro processing	\checkmark	\checkmark	\checkmark	\checkmark	
Micro processing		\checkmark		\checkmark	\checkmark

Source: OPTECH CONSULTING, 8th International Laser Marketplace

Fiber lasers growing fast to become important

Assuming current growth rates fiber laser sales...

- •... starting from today's #5 position...
- ... pass DPSS in 2009
- ... pass LPSS and excimers in 2012
 - ... pass flowing CO2 for #1 position in 2014
 - ... exceed 1BEUR in 2015

Metal processing and marking are the key markets now

 $|| \in | < | < |$

Capital markets have noticed fiber laser companies (at least pure plays...)

Addendum: GSI Group (NSDQ:GSIG) P/S 1,4, market cap 0,33BEUR, revenue 0,23BEUR Addendum: Forward P/E JDSU 29, IPGP 24, IIVI 18, RSTI 17, COHR 16, BKHM N/A Source: NASDAQ, Shanghai Stock Exchange, London AIM; Yahoo Finance; Google Finance (NASDAQ sales numbers ttm, others latest available)

The landscape taking shape, but share prices turbulent

Note: Market cap depicted as relative area of circle Source: NASDAQ, Shanghai Stock Exchange, London AIM; Yahoo Finance; Google Finance (NASDAQ sales numbers ttm, others latest available) Do capital markets know something about technology and business model?

	Price-to-			
Company	Sales	Typical markets	Key technologies	Strategic posture
IPG	5.7	Mat. processing, marking, medical, etc. (broad based offering)	Fiber and direct diode lasers	Tech platform + vertical integration + volume/low price
SPI	8.3	Low-med power mat. processing, marking, medical, military,	Fiber lasers	Vertical integration less diodes
Rofin-Sinar	2.3	"Macro, micro, marking"	High power CO2 etc.	Multi-tech
Trumpf	n/a	Material processing	Disk, CO2, diode bars	Tech platform(s) + vertical integration
Bystronic	n/a	High power material processing	High power CO2	Single-tech machinery
JDSU	2.1	Telecom/laser equipment manuf.	Diodes, (fiber)	"in progress"
Bookham	0.8	Telecom/laser equipment manuf.	Diodes	"in progress"
Coherent	1.7	Low-med power mat. processing, scientific, instrumentation, etc.	DPSS, low power CO2	Advanced laser + high margin?
Newport	1.2	Low-med power mat. processing, scientific, instrumentation, etc.	DPSS	Advanced laser + high margin?

Do capital markets know something about technology

Structure of this presentation

Liekki Corporation – brief introduction

Fiber laser market and the laser industry

Performance, economics, products and some key issues

Conclusion

Technical perspective: Fiber lasers breakthrough in brightness and efficiency

Design feature	Driving factors	performance
Gain region built into low loss waveguide	 Fibers with large mode area and single mode operation Telecom grade silica and good heat conduction paths allow good thermal management 	Superior beamquality (brightness 10 ⁵ that of diodes)!
Very high gain and efficiency	 Low losses (silica fibers) Effective gain materials (Yb, Er, Tm) Efficient pumping – long interaction length High intensity, low threshold 	Compact and powerful, very little energy wasted!
Large bandwidth	 Ability to tailor gain profile with co-dopants 	Tunability, short pulse generation and amplification
Highly confined laser field	Despite LMA fibers, transverse area still small	Component quality and managing nonlinearities key!
Small active region volume	 High gain and avoiding nonlinearities implies short fibers 	Relatively low pulse energies (0.51020mJ) www.liekki.com

DND fibers feature industry's highest pump absorption and excellent power tolerance

	250μm	 Highly-doped Liekki Yb1200-30/250DC Pump absorption ~15dB/m at 976nm Single-stage amplifier seeded with microchip lasers Near diffraction-limited beam profiles (M²<1.2) Peak power >1.2MW achieved with 0.38ns pulses Pulse energy >1.1mJ achieved with 2.3ns pulses High peak fluence of 410J/cm² reached 								
Сс	ore material is	Authors	d _{core} (µm)	T (ns)	P _{peak} (MW)	E _{pulse} (mJ)	M ² (avg x,y)	Δω (nm)	No. of stages	Peak fluence (J/cm ²)
n	erformancel	Di Teodoro and Brooks ¹	40	0.45	1.5	0.7	1.05	0.13	two	160
P	Brooks and Di Teodoro ² 40 1.0 1.0 1.05 0.034 two				230					
	This work 30 0.42 1.27 0.67 1.17 0.55 one 260						260			
	This work 30 4.0 0.35 1.1 1.19 1.0 one 410 Hou et al. ³ 80 0.1 6.0 (!) 1.1 1.2 ? three 93							410		
								93		
		Hou et al. ³ 80 3.1 0.5 3.3 1.2 ? three 280								

Roger L. Farrow et al., "High-Peak-Power (>1.2MW) Pulsed Fiber Amplifier", Photonics West'06. Fiber laser III, Technology, Systems & Applications (6102), Session 7, paper 6102-22.

Extremely flat refractive index profile and uniform doping push the limits of VLMA fibers

• Liekki Yb-DCF with 80µm core, 400µm clad

- Near diffraction-limited beam (M² <1.2) achieved despite very large core
- Largest demonstrated mode area (2750-µm²) with single-transverse-mode operation
- Very high peak powers (~6MW with sub-ns pulses)
- High average power scaling up to 85W with MW pulses

Kai-Chung Hou et al.,"Multi-MW Peak-Power Single-Transverse Mode Pulse Generation with an Yb-doped LMA Fiber Amplifier", Photonics West'06: Fiber laser III, Technology, Systems & Applications (6102), Late breaking development session, paper LBD2

The output was powerful enough to induce air breakdown...

Atmospheric air break-down experiments: • 510 GW/cm2 for 1-ns • 2.5 TW/cm2 for 110-ps

A lot of things can go wrong when playing with fibers... (particularly due to high gain!)

Shown left:

- Blown out end-facet
- Core blow-out
- Facet damage
- Photodarkening
- Poor process control Other:
- Pump destruction due to feedback or selfpulsing
- Burned components
- Polymer coating damage
- Splice destruction

Making it right requires experience, precision and skill!

It is all about the components... (and even more so in pulsed!)

 $|| \in | < | < |$

Component pricing drives vertical integration

 $|| \in | < | < |$

Scarce value chain and "IPR gridlock" also drive vertical integration and proprietary technology

	Electronics and packaging	Pump diodes	Active and passive fiber	Combiners, FBGs and other fiber components	Isolators and other components	Cabling and output optics	System integration (incl. laser design)
Suppliers	Ample supply of service providers	Several suppliers, scalable processes, plenty of capacity Some product adaptation needed for fiber laser use	Handful of suppliers, but not many Some suppliers moving upstream in value chain	Handful of suppliers, high cost, varying quality, manufacture potentially hard to scale up	Less than a handful, high cost, varying quality, manufacture potentially hard to scale up	Several suppliers	Several players
IPR	Not critical, although some IP in place (fiber packaging)	Some IP, does not appear critical	Lots of IP, some critical, some easily available for licensing	Lots of IP, some critical, some easily available for licensing	Some IP, does not appear critical	Not critical	Lots of IP for fiber laser/ amp, some critical, some easily available for licensing .liekki.com 24

Product proliferation in low power pulsed and CW

Category	Fiber laser manufacturer	Product
Low power CW (<400W)	SPI	redPOWER 10350W (400W)
• "Single mode" (M2 ~ 1.1)	IPG	YLR-100/200
Random polarized	Miyachi	100/300W (welding system)
• Modulation up to 50kHz, 10us min pulse width	(Spectra-Physics, Trumpf, Nufern,	New 100-300W: TruFiber 300,
• Air cooled (IPG), air/water cooled (SPI)	GSI, Apollo Instruments)	NuFire, JK50/100/200FL
	JDSU, Nutern, Manlight, Lumics,	Below 50W: Many diverse
	Keopsys, Corelase, etc.	products in this category
High power CW SM (400W1kW3kW)	IPG	YLR-50010003000-SM
 As above, but water cooled 	(Rofin)	
High power CW (over 1kW)	IPG	YLR-1000/2000/5000/10000/
• 110kW20kW(50kW)		20000
Pulsed 10-500ns (low peak power)	IPG	YLP-series
• 0.52mJ(4mJ10mJ)	SPI	redPOWER 10/12/20/30W
Few tens of kW peak power	V-Gen	VPFL-2000/5000/8000/10000
• 10200kHz (some up to 500kHz)	EOLITE	Corus, Boreas
	Multiwave, Quantel, Manlight, etc.	
Pulsed 1-10ns (med/high peak power)	V-Gen	VPFL-SP-2000/5000
 0.041mJ, typically 510ns min 	EOLITE	Boreas
 Up to 100kW peak power 		
Pulsed ps and ps (ultrafast)	Clark MXR	Impulse
	IMRA	Femtolite, uJewel
	Newport Spectra-Physics	Pantera
	Fianium, Corelase, Menlo Systems,	FM1060, Xlase, etc.
	Toptica, Pritel, Calmar, PolarOnyx,	
	etc.	www.liekki.com

NON-EXHAUSTIVE IPG alone in multi kW-Lots of class, Rofin introduces entrants in 100-1kW at Laser2007 (and SPI 300W class at **Product prolife** sed an shows 400W "blade") Laser2007 Category Fiber la acturer Pro dPOWER 10...350W (400W) Low power CW (<400W) SPI IPG YLR-100/200 Lots of players 100/300W (welding system) Mivach Ous min pulse width sics, Rofin, Trumpf New 100-300W: TruFiber 300, in below 50W (Spectr ooled (SPI) I. Apollo Instruments) NuFire, JK50/100/200FL Nufern **CW** category JDSU fern, Manlight, Lumics, Below 50W: Many diverse products in this category Corelase. etc. Keopsy High power CW SM (400W...1kW...3kW) IPG Lots of players -500...1000...3000-SM • As above, but water cooled (Rofin) in basic pulsed, High power CW (over 1kW) -1000/2000/5000/10000/ IPG **IPG presses** • 1...10kW...20kW...(50kW) 00 prices down Pulsed 10-500ns (low peak power) • 0.5...2mJ...(4mJ...10mJ) SPI POWER 10/12/20/30W • Few tens of kW peak power V-Gen VPFL-2000/5000/8000/10000 EOLITE • 10...200kHz (some up to 500kHz) **MW-class peak power pulsed** Multiwave, Quantel Pulsed 1-10ns (med/high peak power) V-Gen not there yet (Spectra Pantera and • 0.04...1mJ, typically 5...10ns min EOLITE **EOLITE Boreas close though...)** • Up to 100kW peak power Pulsed ps and ps (ultrafast) Clark MXR Impulse **IMRA** Femtolite, uJewel **Several players Newport Spectra-Physics** Pantera Fianium, Corelase, Menlo Systems, FM1060, Xlase, etc. in ultrafast Toptica, Pritel, Calmar, PolarOnyx, category www.liekki.com

Simple end-pumped architecture – "multi-laser"

- •Laserline reliable hipower pump source (upto 750W)
- All controlling done through Laserline interface (only one system to learn)
- Plug-and-play compatibility
- Rack-mounted
- •Fiber unit very simple and low cost!
- •Versatile two qualities of beam at the price of one

Liekki OE-Yb-RML-400 Optical Engine "Beam converter"

•Current units reach from 10 up to150W

Demonstrated powers up to 365W

EXAMPLE

Plastic, marking, engraving, cutting – one system, many beams...

Liekki OE-Yb-RML-400 "Beam converter" system with Laserline diodelaser and chiller

Marking: Fiber laser 25W, 80um

Plastic welding: Diode laser 200W, 1.2mm

Marking: Fiber laser 25...50W, 80um

Thin stainless cutting: Fiber laser 90W, 40um

EXAMPLE

and chiller

Plastic, marking, engraving, cutting – one system, many beams...

www.liekki.com 29

Structure of this presentation

Liekki Corporation – brief introduction

Fiber laser market and the laser industry

Performance, economics, products and some key issues

Conclusion

Conclusion

- Fiber laser market is growing and becoming important, driven by a few big attackers and a large number of smaller players and now incumbents joining
- The first major "beach heads" are metal and fine materials processing and marking, with medical, semiconductor processing, printing and military following
 - Several players now entering 50-300W "single mode" arena
 - Rofin alone sofar in joining IPG for the kW-class combat
 - SPI "blade" path to OEM?
- Fiber and diode technology may induce a strategic paradigm shift in the laser industry all players will need to decide their stance
 - Will markets reward others than first-movers/pure-plays (IPG)
 - Business model vertical integration or not?, OEMs?, component suppliers?
 - Price/volume dynamics, and who will survive, who will be good enough to capture high margin markets
- However, value chain scarcity, component pricing and "IPR gridlock" remain serious issues, potentially only solved by vertical integration and proprietary solutions
- Nevertheless, interesting product introductions continue unabated, signalling that the train is moving and continues to accelerate

Questions and comments welcome. Thank you!

The Nanoparticle Fiber Company

Per Stenius (per.stenius@liekki.com) More information at: www.liekki.com