

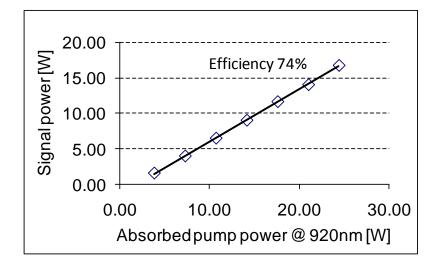
LIEKKITM Yb700-20/125 fibers are amplifier fibers with large core to cladding area ratio. The fibers have high photodarkening resistivity and a short application length.

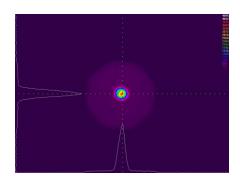
LIEKKITM Yb700-20/125 fibers are currently only available as double cladding (Yb700-20/125DC) fibers.

Features

Applications

- High photodarkening resistivity
- Large core to cladding area ratio, short application length
- Matching 6+1:1 pump to signal combiner is available


- High peak power, moderate average power amplifiers
- Marking


Proven Performance

Typical Device Performance

Package		LIEKKI [™] Yb700-20/125DC
Optical		
Peak Cladding Absorption at 976 nm (nominal)	dB/m	(17.2)
Cladding Absorption at 920 nm	dB/m	4.0 ± 0.5
Core Numerical Aperature		0.08 ± 0.01
Geometrical and Mechanical		
Core Diameter	μm	20 ± 2
Core Concentricity Error	μm	< 1.5
Cladding Diameter	μm	125 ± 2
Cladding Geometry		Octagonal
Coating Diameter	μm	245 ± 15
Cladding Numerical Aperture		> 0.46
Proof Test	Kpsi	> 100

Typical Performance Data

Proven Performance