LIEKKI™ Er120-20/125 – Large Mode Area Erbium Doped Fiber

LIEKKITM Er120-20/125 fibers are large mode area erbium doped fibers suitable for medium power amplifiers and lasers. These fibers are ideally suited for compact, eye-safe devices (1.55 - 1.6 μm region). Both 980 nm and 1480 nm pump diodes may be used for pump sources.

LIEKKITM Er120-20/125 fibers are currently only available as double cladding (Er120-20/125DC) fibers.

Features

- Good beam quality through low numerical aperture core
- Good efficiency
- Suitable for both 980 nm and 1480 nm pumping Pump combiner available for the 20/125 geometry

Applications

- Eye-safe fiber lasers (CW/pulsed) and amplifiers operating in 1.55 - 1.6 µm region
- LIDAR
- Medical
- Sensing

Proven Performance

LIEKKI™ Er120-20/125 – Large Mode Area Erbium Doped Fiber

Typical Device Performance

Fiber		LIEKKI [™] Er120-20/125DC
Optical		
Cladding Absorption at 1530 nm	dB/m	2.9 ± 0.6
Cladding Absorption at 980 nm	(dB/m)	(1.0)
Core Numerical Aperture (nominal)	nm	0.09 ± 0.01
Geometrical and Mechanical		
Core Diameter		20 ± 2
Core Concentricity Error	μm	< 1.5
Cladding Diameter	μm	125 ± 2
Cladding Geometry	μm	Octagonal
Coating Diameter	μm	245 ± 15
Coating Material		Low Index Acrylate
Cladding Numerical Aperture		> 0.46
Proof Test	Kpsi	> 100