LIEKKI[™] Yb1200-6/125

n L I G H T

Single Mode Ytterbium Doped Fiber

LIEKKITM Yb1200-6/125 fibers are highly doped single mode fibers for medium power fiber laser and amplifier applications. Their telcom-like geometry makes them compatible with many fiber based components like fiber gratings and combiners. They are ideal fibers for low-cost marking lasers and pumping sources.

LIEKKITM Yb1200-6/125 fibers are available as double cladding (Yb1200-6/125DC) and double cladding polarization maintaining (Yb1200-6/125DC-PM) fibers.

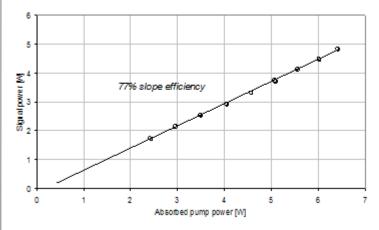
Applications

- Laser marking
- High brightness pump sources
- IR sources for frequency doubling

Features

- High brightness single mode core
- High birefringence (Yb1200-6/125DC-PM)
- High cladding absorption
- Low photodarkening
- Telcom-like geometry
- Good spliceability to HI1060 single mode fibers (Yb1200-6/125DC) and polarization maintaining passive fibers (Yb1200-6/125DC-PM)
- Multimode combiners available

Typical device specification


		LIEKKI [™] Yb1200-6/125DC	LIEKKI [™] Yb1200-6/125DC-PM
Optical			
Mode field diameter at 1060 nm	μm	6.0 ± 0.8	6.0 ± 0.8
Peak cladding absorption at 976 nm (nominal)	dB/m	(2.6)	(2.6)
Cladding absorption at 920 nm	dB/m	0.6 ± 0.2	0.6 ± 0.2
Core numerical aperture		0.15 ± 0.01	0.15 ± 0.01
Birefringence			> 2.0E-04
Geometrical and mechanical			
Core diameter	μm	5.5 ± 0.5	5.5 ± 0.5
Core concentricity error	μm	< 1.0	< 1.0
Cladding diameter (flat-to-flat)	μm	125 ± 2	125 ± 2
Cladding geometry		octagonal	round
Coating diameter	μm	245 ± 15	245 ± 15
Coating material		low index acrylate	low index acrylate
Cladding numerical aperture		> 0.46	> 0.46
Proof test	kpsi	> 100	> 100

nLIGHT Corporation • 5408 NE 88th Street • Vancouver, WA 98665 • USA Tel. +1 360 566 4460 • Fax. +1 360 546 1960 • fibers@nlight.net • www.nlight.net

*n*LIGHT

Typical performance data

Typical performance data for Yb1200-6/125DC

Notice nLIGHT continually improves its products to provide its customers with outstanding quality and reliability. nLIGHT may make changes to specifications and product descriptions at any time, without notice. In addition, nLIGHT offers a limited warranty to ensure customer satisfaction. For complete details, please contact your nLIGHT sales representative.