

LIEKKI[®] Er110-4/125 fiber is a very highly doped erbium fiber designed for fiber lasers. The high Erbium concentration provides a strong gain and reduces the required application length for minimal non-linear effects. This makes this fiber particularly suitable for ultra-short pulse applications.

Features

- Excellent batch consistency of erbium peak absorption and spectral shape
- Very short application length reduces non-linear effects like FWM, SRS and SBS
- Very good temperature behavior
- Suitable for both 980 nm and 1480 nm pumping
- Telecom-like geometry with good spliceability to standard single mode fibers
- Dual layer UV-cured acrylate coating

Typical Fiber Specifications

Applications

- Ultra-short pulse (femtosecond) amplifiers and lasers
- Low non-linearity applications

			_
Fiber		LIEKKI [®] Er110-4/125	
Optical	Units		
Mode Field Diameter at 1550 nm	μm	6.5 ± 0.5	
Peak Core Absorption at 1530 nm	dB/m	110.0 ± 10.0	
Core Numerical Aperture (nominal)		0.2	
Cut-off Wavelength	nm	890 ± 90	
Geometrical and mechanical			
Core Concentricity Error, ≤	μm	0.7	
Cladding Diameter (flat-to-flat)	μm	125 ± 2	
Cladding Geometry		Round	
Coating Diameter		245 ± 15	
Coating Material		Dual coated high index acrylate	
Proof Test, ≥	kpsi	100	