

LIEKKITM Er16-8/125 fibers are large mode area (LMA) erbium doped fibers suitable for medium power output amplifiers.

Good spliceability, excellent power conversion efficiency, and excellent spectral reproducibility and consistency make these fibers the choice for today's medium power output amplifiers used f.ex. in CATV and PON applications.

Features

- Excellent batch consistency of erbium peak absorption and spectral shape
- Good power conversion efficiency for medium power applications
- Wide and flat spectrum
- Low splice loss with single mode and 1060 pigtail fibers
- Splicing parameters available for Ericsson, Fitel and Sumitomo splicers
- Dual layer UV-cured acrylate coating
- Telcordia GR-1312-CORE Generic Requirements qualified
- Suitable for both 980 nm and 1480 nm pumping

Applications

- Medium power DWDM, CATV and PON
- Medium power, low nonlinearity applications

Proven Performance

LIEKKI™ Er16-8/125 – Erbium Doped Fiber

Typical Device Performance

Fiber		LIEKKI [™] Er16-8/125
Optical		
Mode Field Diameter at 1550 nm	μm	9.5 ± 0.8
Peak Core Absorption at 1530 nm	dB/m	16 ± 3
Core Numerical Aperture (nominal)		0.13
Cut-off Wavelength	nm	1100 - 1400
Geometrical and Mechanical		
Core Concentricity Error	μm	< 0.7
Cladding Diameter	μm	125 ± 2
Cladding Geometry	μm	Round
Coating Diameter	μm	245 ± 15
Coating Material		High Index Acrylate
Proof Test	Kpsi	>100 kpsi